If it's not what You are looking for type in the equation solver your own equation and let us solve it.
35x^2-216x+112=0
a = 35; b = -216; c = +112;
Δ = b2-4ac
Δ = -2162-4·35·112
Δ = 30976
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{30976}=176$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-216)-176}{2*35}=\frac{40}{70} =4/7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-216)+176}{2*35}=\frac{392}{70} =5+3/5 $
| 15/2.5=18/h | | 12-35=x^2 | | 1-9x=8x | | z-(-3)=2z-(-5) | | 24x-10=20x+14 | | 7=0.1x(x-8) | | 7x^2=-10x-5 | | 1+t+3−5t+5= | | -2x+14=3x-10 | | 4z−12=-5 | | 35x+8=45x+7 | | 4x+2=x+11-x | | 2/3m+8/3=3m | | 1/10y+4=-12 | | 2-x=3-√7-3x | | 3x-4=66 | | (x^2/36)+4x+64=0 | | |x/4-(10)|=7 | | w(w+8)=-16 | | 5*n=10.8 | | |(x/4-10)|=7 | | (1/36)x^2+4x+64=0 | | (1/36)x^2=0 | | -3/7(m-9)=3-6m | | 3/2=2/7n | | F(7)=3/4x+5 | | 6x-18=38 | | 1.2^x=20 | | 10000q+130000=8000q+330000 | | ((7/2)t)-2=4+7t | | 100000q+130000=8000q+330000 | | 12x+10x=32-10 |